Fully Dynamic Betweenness Centrality Maintenance on Massive Networks
نویسندگان
چکیده
Measuring the relative importance of each vertex in a network is one of the most fundamental building blocks in network analysis. Among several importance measures, betweenness centrality, in particular, plays key roles in many real applications. Considerable effort has been made for developing algorithms for static settings. However, real networks today are highly dynamic and are evolving rapidly, and scalable dynamic methods that can instantly reflect graph changes into centrality values are required. In this paper, we present the first fully dynamic method for managing betweenness centrality of all vertices in a large dynamic network. Its main data structure is the weighted hyperedge representation of shortest paths called hypergraph sketch. We carefully design dynamic update procedure with theoretical accuracy guarantee. To accelerate updates, we further propose two auxiliary data structures called two-ball index and special-purpose reachability index. Experimental results using real networks demonstrate its high scalability and efficiency. In particular, it can reflect a graph change in less than a millisecond on average for a large-scale web graph with 106M vertices and 3.7B edges, which is several orders of magnitude larger than the limits of previous dynamic methods.
منابع مشابه
Fully-Dynamic Approximation of Betweenness Centrality
Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previou...
متن کاملApproximating Betweenness Centrality in Fully Dynamic Networks
Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Because exact computations are prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in networks that change over ti...
متن کاملFaster Betweenness Centrality Updates in Evolving Networks
Finding central nodes is a fundamental problem in network analysis. Betweenness centrality is a well-known measure which quantifies the importance of a node based on the fraction of shortest paths going though it. Due to the dynamic nature of many today’s networks, algorithms that quickly update centrality scores have become a necessity. For betweenness, several dynamic algorithms have been pro...
متن کاملEfficient algorithms for updating betweenness centrality in fully dynamic graphs
Betweenness centrality of a vertex (edge) in a graph is a measure for the relative participation of the vertex (edge) in the shortest paths in the graph. Betweenness centrality is widely used in various areas such as biology, transportation, and social networks. In this paper, we study the update problem of betweenness centrality in fully dynamic graphs. The proposed update algorithm substantia...
متن کاملA Faster Algorithm for Fully Dynamic Betweenness Centrality
We present a new fully dynamic algorithm for maintaining betweenness centrality (BC) of vertices in a directed graph G = (V,E) with positive edge weights. BC is a widely used parameter in the analysis of large complex networks. We achieve an amortized O(ν · log n) time per update, where n = |V | and ν bounds the number of distinct edges that lie on shortest paths through any single vertex. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 9 شماره
صفحات -
تاریخ انتشار 2015